	NILASAILA INSTITUTE OF SIIENCE \& TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE\& affiliated to SCTE\&VT, Odisha)
LESSON PLAN	
SUBJECT: Th-2 (STRENGTH OF MATERIAL)	

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the SyllabusNo. of Periods as per the Syllabus	No. of periods actually needed	
1	Simple Stress \& Strain	10	10
2	Thin cylindrical and spherical shell under internal pressure	8	8
3	Two dimensional stress systems	10	10
4	Bending moment\& shear force	10	10
7	Theory of simple bending	10	10
7	Combined direct \& Bending stresses	6	6
6	Torsion	6	6
2	Total Period:	60	60

Discipline: MECHANICAL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. YASOBANTA DAS
Week	Class Day	Theory / Practical Topics
$1^{\text {st }}$	$1^{\text {st }}$	Introduction to Strength of Material .
	$2{ }^{\text {nd }}$	1.0 Simple stress\& strain 1.1 Types of load, stresses \& strains,(Axial and tangential) Hooke's law, Young's modulus, bulk modulus, modulus of rigidity.
	$3^{\text {rd }}$	Poisson's ratio, derive the relation between three elastic constants,
	$4^{\text {th }}$	1.2 Principle of super position, stresses in composite section
$2^{\text {nd }}$	$1^{\text {st }}$	1.2 Principle of super position, stresses in composite section
	$2^{\text {nd }}$	1.3 Temperature stress, determine the temperature stress in composite bar (single core)
	$3^{\text {rd }}$	1.3 Temperature stress, determine the temperature stress in composite bar (single core)
	$4^{\text {th }}$	1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load
$3^{\text {rd }}$	$1^{\text {st }}$	1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load
	$2^{\text {nd }}$	1.5 Simple problems on above.
	$3{ }^{\text {rd }}$	1.5 Simple problems on above.
	$4^{\text {th }}$	2.0 Thin cylinder and spherical shell under internal pressure 2.1 Definition of hoop and longitudinal stress, strain
$4^{\text {th }}$	$1^{\text {st }}$	2.1 Definition of hoop and longitudinal stress, strain
	$2^{\text {nd }}$	2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain

$4^{\text {th }}$	$3^{\text {rd }}$	2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain
	$4^{\text {th }}$	2.3 Computation of the change in length, diameter and volume
$5^{\text {th }}$	$1^{\text {st }}$	2.3 Computation of the change in length, diameter and volume
	$2^{\text {nd }}$	2.4 Simple problems on above
	$3^{\text {rd }}$	2.4 Simple problems on above
	$4^{\text {th }}$	3.0 Two dimensional stress systems 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane
$6^{\text {th }}$	$1^{\text {st }}$	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane
	$2^{\text {nd }}$	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane
	$3{ }^{\text {rd }}$	3.2 Location of principal plane and computation of principal stress
	$4^{\text {th }}$	3.2 Location of principal plane and computation of principal stress
$7^{\text {th }}$	$1^{\text {st }}$	3.2 Location of principal plane and computation of principal stress
	$2^{\text {nd }}$	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle
	$3^{\text {rd }}$	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle
	$4^{\text {th }}$	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle
$8^{\text {th }}$	$1^{\text {st }}$	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle

$8^{\text {th }}$	$2^{\text {nd }}$	4.0 Bending moment\& shear force 4.1 Types of beam and load
	$3^{\text {rd }}$	4.2 Concepts of Shear force and bending moment
	$4^{\text {th }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam
$9^{\text {th }}$	$1^{\text {st }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam
	$2^{\text {nd }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
	$3^{\text {rd }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
	$4^{\text {th }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam
$10^{\text {th }}$	$1^{\text {st }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	$2^{\text {nd }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	$3^{\text {rd }}$	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load
	$4^{\text {th }}$	INTERNAL ASSESMENT
$11^{\text {th }}$	$1^{\text {st }}$	INTERNAL ASSESMENT
	$2^{\text {nd }}$	5.0 Theory of simple bending 5.1 Assumptions in the theory of bending,
	$3^{\text {rd }}$	5.2 Bending equation, Moment of resistance, Section modulus\& neutral axis.
	$4^{\text {th }}$	5.2 Bending equation, Moment of resistance, Section modulus\& neutral axis.

$12^{\text {th }}$	$1^{\text {st }}$	5.2 Bending equation, Moment of resistance, Section modulus\& neutral axis.
	$2^{\text {nd }}$	5.2 Bending equation, Moment of resistance, Section modulus\& neutral axis.
	$3^{\text {rd }}$	5.3 Solve simple problems.
	$4^{\text {th }}$	5.3 Solve simple problems.
$13^{\text {th }}$	$1^{\text {st }}$	5.3 Solve simple problems.
	$2^{\text {nd }}$	5.3 Solve simple problems.
	$3^{\text {rd }}$	5.3 Solve simple problems.
	$4^{\text {th }}$	6.0 Combined direct \& bending stresses 6.1 Define column
$14^{\text {th }}$	$1^{\text {st }}$	6.2 Axial load, Eccentric load on column,
	$2^{\text {nd }}$	6.3 Direct stresses, Bending stresses, Maximum\& Minimum stresses. Numerical problems on above.
	$3^{\text {rd }}$	6.3 Direct stresses, Bending stresses, Maximum\& Minimum stresses. Numerical problems on above.
	$4^{\text {th }}$	6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions
$15^{\text {th }}$	$1^{\text {st }}$	6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions
	$2^{\text {nd }}$	7.0 Torsion 7.0 Assumption of pure torsion
	$3^{\text {rd }}$	7.1 The torsion equation for solid and hollow circular shaft

$\mathbf{1 5}^{\text {th }}$	$\mathbf{4}^{\text {th }}$	7.1 The torsion equation for solid and hollow circular shaft
$\mathbf{1 6}^{\text {th }}$	$\mathbf{1}^{\text {st }}$	7.1 The torsion equation for solid and hollow circular shaft
	$\mathbf{2}^{\text {nd }}$	7.2 Comparison between solid and hollow shaft subjected to pure torsion
	$\mathbf{3}^{\text {rd }}$	7.2 Comparison between solid and hollow shaft subjected to pure torsion
	$\mathbf{4}^{\text {th }}$	Revision.

